Exercise 20

If $\tanh x = \frac{12}{13}$, find the values of the other hyperbolic functions at x.

Solution

Suppose that $\tanh x = \frac{12}{13}$. Then

$$\operatorname{sech}^2 x = 1 - \tanh^2 x = 1 - \left(\frac{12}{13}\right)^2 = \frac{25}{169}$$

Take the square root of both sides.

$$\operatorname{sech} x = \pm \frac{5}{13}$$

Since hyperbolic cosine and hyperbolic secant are always positive, choose the plus sign.

$$\operatorname{sech} x = \frac{5}{13}$$

Since $1/\cosh x = \operatorname{sech} x$,

$$\cosh x = \frac{13}{5}.$$

Since $\cosh^2 x - \sinh^2 x = 1$,

$$\sinh^2 x = \cosh^2 x - 1 = \left(\frac{13}{5}\right)^2 - 1 = \frac{144}{25}.$$

Take the square root of both sides.

$$\sinh x = \pm \frac{12}{5}$$

Since $\tanh x$ is positive, choose the plus sign.

$$\sinh x = \frac{12}{5}$$

Since $1/\sinh x = \operatorname{csch} x$,

$$csch x = \frac{5}{12}.$$

And since $1/\tanh x = \coth x$,

	$\coth x$	=	13
			$\overline{12}$.