Exercise 20

If $\tanh x=\frac{12}{13}$, find the values of the other hyperbolic functions at x.

Solution

Suppose that $\tanh x=\frac{12}{13}$. Then

$$
\operatorname{sech}^{2} x=1-\tanh ^{2} x=1-\left(\frac{12}{13}\right)^{2}=\frac{25}{169} .
$$

Take the square root of both sides.

$$
\operatorname{sech} x= \pm \frac{5}{13}
$$

Since hyperbolic cosine and hyperbolic secant are always positive, choose the plus sign.

$$
\operatorname{sech} x=\frac{5}{13}
$$

Since $1 / \cosh x=\operatorname{sech} x$,

$$
\cosh x=\frac{13}{5} .
$$

Since $\cosh ^{2} x-\sinh ^{2} x=1$,

$$
\sinh ^{2} x=\cosh ^{2} x-1=\left(\frac{13}{5}\right)^{2}-1=\frac{144}{25} .
$$

Take the square root of both sides.

$$
\sinh x= \pm \frac{12}{5}
$$

Since $\tanh x$ is positive, choose the plus sign.

$$
\sinh x=\frac{12}{5}
$$

Since $1 / \sinh x=\operatorname{csch} x$,

$$
\operatorname{csch} x=\frac{5}{12} .
$$

And since $1 / \tanh x=\operatorname{coth} x$,

$$
\operatorname{coth} x=\frac{13}{12} \text {. }
$$

